Best VPS for Python: Top Hosting Picks for Django, Flask & More in 2026
Looking for the best VPS to host Python applications? We compare top providers for Django, Flask, FastAPI, and Python scripts.
Best VPS for Python: Top Hosting Picks for Django, Flask & More
Python powers everything from web apps to AI models. A VPS for Python gives you the flexibility to run Django, Flask, FastAPI, data processing scripts, or machine learning workloads.
Why Host Python on a VPS?
Unlike shared hosting (limited Python support) or PaaS (expensive at scale), a VPS gives you full control over your Python environment — any version, any library, any configuration.
Common Python VPS Use Cases
- Web frameworks: Django, Flask, FastAPI
- APIs: REST, GraphQL, WebSocket
- Data processing: Pandas, NumPy scripts
- Machine learning: Model inference, training
- Automation: Scrapers, bots, scheduled tasks
- Background workers: Celery, RQ, Dramatiq
Python VPS Requirements
| Use Case | Min RAM | Recommended | CPU |
|---|---|---|---|
| Flask/FastAPI API | 1GB | 2GB | 1 vCPU |
| Django site | 2GB | 4GB | 2 vCPU |
| Celery workers | 1GB | 2GB+ | 2 vCPU |
| Data processing | 2GB | 4-8GB | 2-4 vCPU |
| ML inference | 4GB | 8-16GB | 4+ vCPU |
Python's memory usage depends heavily on your libraries. Pandas with large datasets needs significant RAM.
Top VPS Picks for Python
1. Hostinger VPS (Best Value)
$4.99/mo | 1 vCPU, 4GB RAM, 50GB NVMe
Excellent for most Python apps:
- 4GB RAM handles Django + database + Celery
- NVMe for fast pip installs
- 24/7 support
- Easy upgrade path
Why it's best for Python: Generous RAM means you can run full-stack Django or data processing without constraints.
2. Hetzner Cloud (Best for Data Work)
€3.79/mo | 2 vCPU, 4GB RAM, 40GB NVMe
Great for compute-heavy Python:
- 2 vCPU for parallel processing
- Cheap volume storage for datasets
- 20TB traffic included
- ARM64 servers (50% cheaper)
3. DigitalOcean (Best Developer Experience)
$12/mo | 1 vCPU, 2GB RAM, 50GB SSD
Python-friendly platform:
- App Platform supports Python
- Managed PostgreSQL available
- Excellent documentation
- Spaces for data storage
4. Vultr (Best Global Coverage)
$6/mo | 1 vCPU, 1GB RAM, 25GB NVMe
Deploy Python APIs globally:
- 32 locations worldwide
- Fast deployment
- Snapshot backups
- High-frequency compute option
5. Contabo (Best for ML/Data)
€4.99/mo | 4 vCPU, 8GB RAM, 50GB SSD
Massive resources for the price:
- 8GB RAM for Pandas/NumPy workloads
- 4 vCPU for parallel processing
- 400GB NVMe option
- Great for ML inference
Quick Python Deployment
Step 1: Get Your VPS
Choose Ubuntu 24.04 LTS.
Step 2: Install Python & Tools
apt update && apt upgrade -y
apt install python3.12 python3.12-venv python3-pip git nginx -y
Step 3: Create Virtual Environment
cd /var/www
git clone https://github.com/yourname/yourapp.git myapp
cd myapp
python3.12 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
Step 4: Set Up Gunicorn
pip install gunicorn
# Create systemd service
cat > /etc/systemd/system/myapp.service << EOF
[Unit]
Description=Gunicorn instance for myapp
After=network.target
[Service]
User=www-data
Group=www-data
WorkingDirectory=/var/www/myapp
Environment="PATH=/var/www/myapp/venv/bin"
ExecStart=/var/www/myapp/venv/bin/gunicorn --workers 3 --bind unix:myapp.sock -m 007 app:app
[Install]
WantedBy=multi-user.target
EOF
systemctl start myapp
systemctl enable myapp
Step 5: Configure Nginx
# /etc/nginx/sites-available/myapp
server {
listen 80;
server_name yourdomain.com;
location / {
include proxy_params;
proxy_pass http://unix:/var/www/myapp/myapp.sock;
}
location /static {
alias /var/www/myapp/static;
}
}
ln -s /etc/nginx/sites-available/myapp /etc/nginx/sites-enabled/
nginx -t && systemctl reload nginx
Step 6: SSL with Let's Encrypt
apt install certbot python3-certbot-nginx -y
certbot --nginx -d yourdomain.com
Provider Comparison
| Provider | RAM | CPU | Price | Best For |
|---|---|---|---|---|
| Hostinger | 4GB | 1 vCPU | $4.99 | Django, Flask |
| Hetzner | 4GB | 2 vCPU | €3.79 | Data processing |
| DigitalOcean | 2GB | 1 vCPU | $12 | Dev experience |
| Vultr | 1GB | 1 vCPU | $6 | APIs |
| Contabo | 8GB | 4 vCPU | €4.99 | ML, heavy compute |
Python Performance Tips
1. Use Gunicorn Workers
Scale with CPU cores:
# Rule: 2*cores + 1 workers
gunicorn --workers 5 --bind 0.0.0.0:8000 app:app
2. Use uvloop for Async (FastAPI)
pip install uvloop uvicorn
uvicorn main:app --host 0.0.0.0 --port 8000 --workers 4
3. Add Redis Caching
apt install redis-server -y
pip install redis
import redis
r = redis.Redis(host='localhost', port=6379, db=0)
r.set('key', 'value')
4. Use PostgreSQL Connection Pooling
# With psycopg2 and Django
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.postgresql',
'CONN_MAX_AGE': 60,
'OPTIONS': {'MAX_CONNS': 20}
}
}
5. Profile Memory Usage
pip install memory-profiler
python -m memory_profiler script.py
6. Use Celery for Background Tasks
pip install celery redis
from celery import Celery
app = Celery('tasks', broker='redis://localhost:6379/0')
@app.task
def process_data(data):
# Heavy computation here
pass
Framework-Specific Setup
Django
pip install django gunicorn psycopg2-binary
django-admin startproject myproject
cd myproject
# Production settings
python manage.py collectstatic
python manage.py migrate
Flask
pip install flask gunicorn
# app.py
from flask import Flask
app = Flask(__name__)
@app.route('/')
def hello():
return 'Hello, World!'
FastAPI
pip install fastapi uvicorn[standard]
# main.py
from fastapi import FastAPI
app = FastAPI()
@app.get("/")
async def root():
return {"message": "Hello World"}
Run with:
uvicorn main:app --host 0.0.0.0 --port 8000
FAQ
How much RAM for Django?
- Small site: 1-2GB
- Medium site + Celery: 2-4GB
- Large site + background workers: 4-8GB
Gunicorn vs. uWSGI?
Both work well. Gunicorn is simpler and recommended for most cases. uWSGI offers more features for complex deployments.
Should I use Docker?
Docker is great for:
- Reproducible environments
- Easy deployment
- Multiple Python versions
FROM python:3.12-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
CMD ["gunicorn", "--bind", "0.0.0.0:8000", "app:app"]
How do I handle environment variables?
# .env file
DATABASE_URL=postgres://user:pass@localhost/db
SECRET_KEY=your-secret-key
# python-dotenv
from dotenv import load_dotenv
load_dotenv()
import os
SECRET_KEY = os.getenv('SECRET_KEY')
Can I run Jupyter Notebook on a VPS?
Yes! Great for data analysis:
pip install jupyter
jupyter notebook --ip=0.0.0.0 --port=8888 --no-browser
Use SSH tunnel for secure access:
ssh -L 8888:localhost:8888 user@your-server
Conclusion
For Python applications, Hostinger offers the best starting point:
✅ 4GB RAM at $4.99/mo — enough for Django + database + workers
✅ NVMe storage — fast pip installs and file operations
✅ 24/7 support — help when deployments go wrong
✅ Easy upgrade to 8GB — scale as your app grows
For data-heavy workloads, consider Contabo for the extra RAM and CPU cores. Deploy your Python apps with full control over your environment.
Ready to get started?
Get the best VPS hosting deal today. Hostinger offers 4GB RAM VPS starting at just $4.99/mo.
Get Hostinger VPS — $4.99/mo// up to 75% off + free domain included
// related topics
fordnox
Expert VPS reviews and hosting guides. We test every provider we recommend.
// last updated: February 6, 2026. Disclosure: This article may contain affiliate links.